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Synopsis

v Advantages/Disadvantages of X-ray and Neutrons

v Scattering Length and Scattering Cross-Section

v Kinematic Theory of Scattering and Definition of Scattering Function S(Q)

v Correlation Functions; Coherent and Incoherent Scattering of Neutrons

v Pair Distribution Function and Scattering from Liquids and Glasses

v Diffraction by Crystals and the Reciprocal Lattice; Bragg and Laue Scattering
Single Crystal and Powder Diffraction

v Scattering from 1-Dimensional and 2-Dimensional Systems; Adsorbed Monolayers

v Scattering from Disordered Systems; Diffuse Scattering

v Small Angle Scattering

v Reflectivity and Surface Scattering Truncation Rods



S.K. Sinha 2

Synopsis (Cont.)

v Formal Derivation of Cross-Sections in the Born Approximation

v Inelastic Neutron and X-ray Scattering

v Deep Inelastic (Compton) Scattering

v Quasi-elastic Scattering

v Beam Coherence, Speckle and Dynamical Scattering
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Thermal Neutrons

Advantages

1) λn ~ Interatomic Spacing

2) Penetrates Bulk Matter (neutral particle)

3) Strong Contrasts Possible (e.g. H/D)

4) En ~ Elementary Excitations (phonons, magnons, etc.)

5) Scattered Strongly by Magnetic Moments

Disadvantages

1) Low Brilliance of Neutron Sources-Low Resolution or Intensities; Large Samples; Low Coherence;
Surfaces Difficult

2) Some Elements Strongly Absorb (e.g. Cd, Gd, B)

3) Kinematic Restriction on Q for Large E Transfers

4) Restricted to Excitations ≤ 100 meV
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Synchrotron X-rays

Advantages

1) λn - Interatomic Spacing

2) High Brilliance of X-ray Sources - High Resolution; Small Samples; High Degree of Coherence

3) No Kinematic Restrictions (E,Q uncoupled)

4) No Restriction on Energy Transfer that Can Be Studied

Disadvantages

1) Strong Absorption for Lower Energy Photons

2) Little Contrast for Hydrocarbons or Similar Elements

3) Weak Scattering from Light Elements

4) Radiation Damage to Samples
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Cross-Sections

Let Φ = Incident Flux of particles [sec–1 cm–2]
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Neutrons

If v is the velocity of neutrons (before and after scattering),

Number of neutrons passing through dS/sec
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Neutrons

Sum of scattered waves on plane II:
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[ ] jijiji bbbbbbbb δδ+δ+δ+= 2

zero zero unless i = j
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H has large incoherent σ (10.2 × 10–24 cm2)
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D has larger coherent σ (5.6 × 10–24 cm2)
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If electrons are bound to atoms centered on iR
v

( ) ( )∑ −=ρ
i

ielel Rrfr
vvv

( ) ( )∑∫ −=ρ ⋅−

i
i

rqi
el Rrferdq

vvvv vv

( ) ( ) ii Rqi

i
i

Rrqi eRrferd
vvvvv vvv ⋅−−⋅−∑ ∫ 



 −=

( ) ( ) ( )qqZfeqZf N
i

Rqi i vvv
vv

ρ== ∑ ⋅−

atomic form factor

X-rays

43421
fifff ′′∆+′∆+= 0

“Scattering “anomalous”
   factor”  big at edges
  = Zf(q)

( ) ( )
Ed

EE

Ef
Ef ′

′−
′′′∆

π=′∆ ∫2

   “Kramers-Kronig     
Dispersion Relations



Sinha 10

( ) ( ) 2qqS N
vρ=           ( )[ ] raysxfor2 −× qf

( ) ( )∫ ρ=ρ ⋅− rerdq N
rqi

N
vvv vv

( ) ( ) ( ) ( )rrerdrdqS NN
rrqi ′ρρ′=⇒ ′−⋅−∫∫
vvvvv

If ( ) ( )rr NN ′ρρ v
 = Fn. of ( )rr ′−  only,

( ) ( ) ( )∫ −ρρ′= ⋅− RrrerdVqS NN
Rqi vvvv
vv

= ( )RgeRd Rqi vv vv

∫ ⋅−

( )Rg
v

 = Pair-distribution function

= ( ) ( )RrrV NN
vvv −ρρ

⇒ Probability that given a particle at r
v

, there is one at a
distance R

v
 from it (per unit volume)

( ) ( ) ( )RgRRg d
vvv

+δ=       ( ) ( )RgeRdqS d
Rqi vv v

∫ ⋅−=−1

( ) 2ρ→∞→ VRg Rd
v

Liquids and Glasses
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X-rays
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Reciprocal Lattice
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Crystals (Bravais or Monotonic)
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In general, in a scattering experiment

θ
λ
π

=θ= Sin
4

Sin2kq
v

A simple way to see Bragg’s Law:

Path length difference between rays reflected from
successive planes (1 and 2) = θSin2d

∴ Constructive interference when

θ=λ Sin2dn

Crystals with Complex Unit Cells
(more than one type of atom/cell)

Generalization
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Measurement of Structure Factors → Structure

BUT what is measured is 2
GF  NOT FG!

→ “Phase Problem” → Special Methods

Note that 2
GF  can be written ( )∑
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′ ′µµ
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so that its F.T. yields information about pairs of atoms

separated by KK RR ′−
vv

 ⇒ Patterson Function.

Methods of Measuring Bragg Peaks:

A. Powder Diffraction

For a given k
v
, k ′

v
 will lie on a cone (Debye-Scherrer

cone) traced out by a G
v

 on the Ewald sphere as it is
oriented randomly about the origin of reciprocal space.

2θ = scattering
angle

Peaks whenever 
lhkd2

Sin
λ

=θ  for all sets of planes

indexable by (h,k,l) with spacing dhkl (provided

02 ≠lhkF )
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(Integrated) Intensity of peak associated with (h,k,l) can
be shown to be given by:

( ) lll hkhkhk F
v

V

R

d
I σ

θ
λ

θπ
φ= 2

3

2
0

Sin42Sin2

φ = Incident Flux on sample
d = Detector height
R = Detector Distance
σhkl = Number of relections with same dhkl

(degeneracy factor)

Sometimes, (2θ) is held fixed and we vary λ. Whenever
λ = 2dhkl Sin θ, we get peaks.

(Energy Dispersive X-Ray Powder Diffraction;
Neutron Time-of-Flight P.D.)

Structures often obtained by Rietveld Analysis
(least squares fitting)

B. Single Crystal Bragg Methods

Integrated Intensity under Bragg Peak
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C. Laue Method
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0 Sin2
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( ) λλφ d = Incident flux between λ, λ+dλ

2-D Crystals (Adsorbed Monolayers, Films)

If l
v
R  are all restricted to say the (x,y) plane, z-component

of q
v

 will not affect
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−⋅ ′=
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G
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 is 2-D reciprocal lattice vector in plane

||
q
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 is (x,y) plane component of q
v

⇒ diffraction is on rods in reciprocal space through the

||
G
v

 and parallel to z-axis

Only qz-dependence
of I along rod is due to

( ) Weqf 2−v
 (functions

of qz but slowly
varying)

Powders of 2-D Crystals

asymmetric (saw-tooth)
powder peak shape

(Warren)
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1-D Crystals

( )qS
v

 independent of qz and qy. Planes of scattering in
reciprocal space.

Charge Density Waves/Phonons (x-rays only!)*

These give rise to sinusoidal modulations of the atoms in
the crystals about their equilibrium positions.

lll
vvv
uRR +→

                                        
* For neutrons, phonons can exchange significant

amounts of energy with neutrons, so “instantaneous”
correlation functions are not measured directly, unless
neutron energy is integrated over.

Consider a simple Bravais (monatomic) lattice which has
such a modulation:
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Alloys, Crystals with Defects
                          (vacancies, impurities, etc.)

( )∑
′

−⋅−
′ ′=

Ω
σ

ll

vvv
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ll RRqiebb

d

d

[For neutrons, lb  = (Sc. length of nucleus at site l ) lWe−× .

For x-rays, ( ) 0reqZfb Wl
l

−=  for atom at site l.]

For 2 types of atoms 1,2 with b1, b2

( )[ ] ( )[ ]∑
′

′′ ρ−+ρρ−+ρ=
Ω
σ

ll
llll 11 2121 bbbb

d

d
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× ′−⋅− ll
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where

lρ  = probability of occupn. by atom 1 on site l.

lρ  = c + lδρ

c = lρ  = Concn. of type 1.
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( ) ( ) ( ) ( )∑
′

−⋅−
′ ′δρδρ−+=

Ω
σ
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llvv RRqieffqSb
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     [Bragg Peaks]

2nd term → Diffuse Scattering

If ll ′δρδρ ,  uncorrelated, llll K ′′ δδρδρ ~

2nd term = ( ) 22
21 lδρ− ff  = ( ) ( )ccff −− 12

21

Small Angle Scattering 








SAXS
SANS

Length scale probed in a scattering experiment at

wave-vector transfer q
v

 is ~ 






 π
q

2
 (e.g., Bragg

scattering 
l

l
hk

hk G
d

π2
~ )

Thus small q
v

 scattering probes large length scales, not
atomic or molecular structure.

At small q, one can consider “smeared out” nuclear or
electron density varying relatively slowly in space.

( ) ( ) ( ) ( )rrerdrdqI ss
rrqi ′ρρ′∝ ′−⋅−∫∫ vvvvv vvv

where

( )rs
vρ  = scattering length (average) density for

neutrons

= electron density for electrons.
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Since uniform ( )rs
vρ  would give only forward scattering,

we use the deviations (contrast) from the average density

( ) ( ) ( ) ( )rrerdrdqI ss
rrqi ′δρδρ′∝ ′−⋅−∫∫ vvvv vvv

Single Particles (Dilute Limit)

Let ρ0 be average sld (e.g., embedding media or solvent)

ρ1 be average sld of particle (assume uniform)

( ) ( ) ( ) ( )qferdqI
V

rqi vvv vv
2

01
2

2
01 ρ−ρ=ρ−ρ∝ ∫ ⋅−

where V is over volume of particle, ( )qf
v

 is determined by
shape of particle, e.g., for sphere of radius R,

( ) ( ) ( ) ( )
( )30

CosSin

qR

qRqRqR
Vqf

−
= V0 = Particle

Volume

origin of r
v

 is taken as centroid of particle.

Expanding exponential,
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vvvvvvv vv
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∫
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∫
∫
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rrdq
V
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0 6
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2
Gr       rG = radius of gyration

so ( ) ( ) 



 +−=ρ−ρ∝ K

v 222
0

2
01 3

1
1 GrqVqI             approx.

( ) ( )
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1
2
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2
01~

Grq
eVAqI

−
ρ−ρv

Guinier Approxn.
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Small-Angle Scattering Is Used to Study:

• 







Shapes
Sizes of particles in dilute solution (Polymers,

Micelles, Colloids, Proteins, Precipitates, …)

• Correlation between particles in concentrated solutions
(Aggregates, Fractals, Colloidal Crystals and Liquids)

• 2-component or multicomponent systems (Binery fluid
mixtures, Porous Media, Spinodal Decomposition)

For colliodal, micellar liquids:

( ) ( ) ( ) ( )∑
′

−⋅
′ ′=

ll

vvv

ll
llvvv RRqieqfqfqS *

Form
Factor

 ( ) ( )qSqf
vv

l 0
2=

Structure
Factor

( ) ( )∑
′

−⋅ ′=
ll

vvv
llv RRqieqS0  = S.F. of centers of particles

→ Liquid- or glass-like

Fractals These are systems which are scale-invarient
(usually in a statistically averaged sense)
i.e., R → κR, the object resembles itself
(“self-similarity”)

Property: If n(R) is number of particles inside a sphere of
radius R

n(R) ~ RD D = Fractal (Hausdorff)
Dimension

It follows that

4πR2d Rg(R) = C RD–1dR      C = constant

( )
D

D

R

C
R

C
Rg −

−
π

=
π

=∴
3

3 1
44

( ) ( )∫ ×==∴ ⋅−
D

Rqi

q
RgeRdqS

1
Const0

vvvv
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***

Examples: Aggregates of micelles, colloids, granular
materials, rocks*

* Surface fractals ( )
SDSq

qS −
1

~

Porous Media

φ1 = Vol. fraction of I

φ2 = Vol. fraction of II = 1 – φ1

V = Sample Volume

( ) ( ) ( ) ( )rrerdrdVqI
rrqi ′−γ′ρ−ρφφ∝

′−⋅−
∫∫ vvvv

vvv

0
2

2121

( )r
v

0γ  = Debye correlation fn.

For small R (large q), ( ) lRR −γ 1~0

so asymptotically for large q,

( )
4

2
~

q

A
qI sπ

      (As = Internal Surface Area)

Porod’s law for smooth (Ds = 2) surfaces

Reflectivity

n = 1

n = 1 − δ − iβ
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For x-rays, neutrons

bn 2

2
1 λ

π
ρ

−=

b = Av. nucl. scattering length for neutrons

ρ = No. of nuclei/volume for neutrons

b = r0 or ( )22 mce  for x-rays

ρ = No. of Electrons/Volume

Proof (for x-rays)

( )
2

2

1
ω

ω
−=ωε P       ωP = Plasma Frequency

At x-ray frequencies

ρ
π

=
m

e
wP

2
2 4

      
λ
π

=ω
c2

( ) 










π
ρλ











−=

π

λ
ρ

ω

π
−=

ω

ω
−=ω

2

2

2

22

2

2

2

2

2

1
4

4
11

mc

e

em

e
E P

0

2
1 r

π
ρλ

−=

β−ρλ
π

−= i
r

En 20
2

1~         For absorption

~ 10−6      ~ 10−8

Neutrons obey Schrödinger Eqn.

( ) ( ) ( ) 0
2

2
2

=φ−+φ∇− rEVr
m

vh

or ( ) ( ) ( ) 0
2

2
2 =φ−+φ∇ rVE

m
r

v

h

b
m

V ρ
π

=
22 h

      2
0

2

2
k

m
E

h
=

( ) 










π
ρλ

−=








 πρ
−=πρ−=−∴

f
k

k

b
kbkVE

m 2
2
02

0

2
0

2
02

1
4

14
2

h

n2

( ) 2
0

2 krn
v=
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Also wave-eqn. for x-rays (“s” poln.)

( ) ( )rEr y
vv =φ

( ) ( ) ( ) 02
0

22 =φ+φ∇∴ rkrnr
vvv

For single smooth surface
 

( )[
]IIregionin

Iregionin1
n

rn
=
=v

matching boundary conditions









∂
φ∂

φ boundaryatcontinuous,continuous
z

gives for incident wave rki ie
vv

⋅ , a reflected wave rki rre
vv

⋅ ,

and transmitted wave rki tte
vv

⋅

( ) ( ) ( ) 0=== ytyryi kkk

we have

( ) ( ) ( )

( ) ( ) 







−=

==

zizr

xtxrxi

kk

kkk

 ← specular reflectivity (α = β)

( ) ( ) ( )222 1 nkkk izizt −−=

( ) ( )
( ) ( )ztzi

ztzi

kk

kk
r

+
−

=       
( )

( ) ( )ztzi

zi

kk

k
t

+
=

2

FRrR == 2       “Fresnel Theory (smooth flat surface)

If ( ) ( )222 1 nkk izi −< , ( )ztk  is purely imaginary

(evenescent wave in medium II)

( )2222 1Sin nkk ii −<α

or ( ) c
b

n α=
π

ρλ
=−<α 2

2
22 Sin1Sin

or cα<α       
2/1

~ 







π

ρ
λα

b
c

(critical angle for total
external reflection)



S.K. Sinha 26

then

12 =r  → total external reflection

For reflectivity process,

( )( )ziir kkkq 2,0,0=−=
vvv

i.e., along qz only

( ) 2/14Sin
4

Sin2 bkq ccic πρ=α
λ
π

=α=

independent of λ

Approximate effect of roughness 




 σ=δ 22z

22σ−= zq
FeRR       ( )cz qq >>

Born Approximation for Specular
Reflectivity

Suppose nuclear or electron density is fn. of z only.

( )
22 ∫ ⋅−ρ=

Ω
σ rqiezrdb

d

d vvv

( ) ( )
∫∫∫

++−
ρ=

zqyqxqi zyxezdzdydxb 2

( ) ( ) ( ) ( )
2

22 4 ∫
∞

∞−

−ρδδπ= ziq
yxA

zezdzqqb

A = area of surface
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0A

d
d

d

R
Φ

ΦΩ
Ω
σ

=
∫

A0 = Cross-section of incident beam

dΩ = Solid Angle subtened by detector

yx
i

dqdq
k

d
α

=Ω
Sin

1
2       A0 = A Sin α

or 
( )

2

0
4

0
22 116

∫
∞

∞−

−ρ
ρ

ρπ
= ziq

z

ze
dz

zd
dz

q

b
R

( ) ( )
2

0

1~ ∫
∞

∞−

−ρ
ρ

ziq
zF

ze
dz

zd
dzqRR

Simple cases:

( )
00

00

≥=

>ρ=ρ

z

zz smooth
surface

( ) ( )z
dz

zd
δρ−=

ρ
0  → ( )zF qRR =

( ) ( )rzErfz /=ρ

( ) 22 2/0

2
σ−

πσ
ρ

−=
ρ ze
dz

zd rough
surfaces

( )
22σ−= zq

zF eqRR

( )

dz

dz

zz

>=
<<ρ=

<ρ=ρ

0

0

0

1

0 smooth
thin film

( ) ( ) ( )dzz
d
d

z
−δρ−δρ−ρ−=ρ

110
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( ) ( )











ρ

ρ−ρρ
−=

2
Sin

4
1 2

2
0

101 dq
RR z

F

Crystal Truncation rods

( ) ( )∑
′

−⋅− ′=
ll

vvv
ll RRqieqS       δ(qx − Gx)      δ(qy − Gy)

( ) ( )∑∑ ∑∑
∞

∞−+

∞

∞−=

′−−′−−

′ ′

=
xx yy

yyyxxx

nn nn

anniqanniq ee
, ,

( )anniq

znn

zzz

zz

e ′−−

∞−=′
ΣΣ×

00

,

( ) 2−− zz Gq

Formal Theory of Scattering

Neutrons

ψk incident neutron wave fn.

χλ initial sample wave fn.

ψk′ scattered neutron wave fn.

χλ′ final sample wave fn.
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∑
Ω

′
λ′′→λ

λ′→λ ΩΦ
=








Ω
σ d

k
kkW

dd

d vv11

λ′′→λ kkW  =  Number of transitions λ′′→λ kk  per second

Use Fermi’s Golden Rule:

22
λλ′′π

= ′

Ω

′
λ′′→λ∑ kVkvW k

d

k
kk

vv

h
vv

vk′ = Number of neutron momentum states in dΩ per unit

energy range at k ′
v

.

V = Interaction potential of neutron with the sample.

H = Hneutrons 










N

N

m

P

2

2

 + Hsample + V

Quantize states in box of side L with periodic boundary
conditions:

( )zyx nnn
L

k ,,
2π

=
v

Density of k-pts / unit vol. of k-space = 
( )3

3

2π

L

2
2

2
k

m
E ′=′ h

dkk
m

Ed ′=′
2h

Now vk′dE′ = Number of k-pts inside dΩ with energy

between E′, and E′ + dE′

( )
( )3

3
2

2π
Ω′′=

L
dkdk

( )
Ω′

π
=∴ ′ dk

mL
vk 23

3

2 h

(1)

(2)
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Incident neutron wave fn.      rki
k eL

vv
⋅−=ψ 23

Incident flux      
3

2 1

L
k

m
v k

h
=ψ=Φ

Thus, by Eqs. (1), (2),

26
2

22
λλ′′









π

′
=








Ω
σ

λ′→λ
kVkL

m

k

k

d

d vv

h

Use energy conservation law,

62
2

2

2

2
LkVk

m

k

k

Edd

d
λλ′′









π

′
=











′Ω
σ

λ′→λ h

( )EEEE ′−+−δ λ′λ  

Formally represent interaction between neutron and
nucleus by a delta-fn. (Fermi pseudopotential)

( ) ( )inin RraRrV
vv −δ=−

Consider elastic scattering again from a single fixed
nucleus:

Elastic akVk
kk

=λλ′′
λ=λ′

=′

(3) gives 2
2

22
a

m

d

d









π
=

Ω
σ

h

Comparing this with the result 2b
d

d
=

Ω
σ

b
m

a 








 π
=

22 h

Thus V(r) = ( )rb
m

vh
δ









 π 22
 is the effective interaction

between a neutron at r
v

 and a fixed nucleus at the origin.

(3)

(4)
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Scattering by an assembly of nuclei:

( ) ( )j

N

j
j Rrb

m
rV

vvh
& −δ









 π
= ∑

=1

22
 for neutron at r

v
.

( )

( )∑

∫ ∫∫∫

=
λλ′

⋅−′−










 π
×−δχχ

=λλ′′

N

j
jj

N
rkki

m
Rrb

dRdRerd
L

kVk

1

2
*

13

2

1

hvv

KK
vv vvv

∑
=

⋅−
λλ′










 π
=

N

j

Rqi
j

jeb
mL 1

2

3
21

vvh
 

Thus from Eq. (4)





λλ′


 λ′λ

′
=











′Ω
σ

⋅

⋅−

=λ′→λ
∑

j

i

Rqi

Rqi
N

ji
ji

e

ebb
k

k

Edd

d

vv

vv

1,

2

( )ω+−δ λ′λ hEE  

where

hω = E − E′ = Neutron energy loss

Summing over all possible final states λ′ of the sample
and averaging over all initial states λ, we obtain

λλ′λ′λ
′

=










′Ω
σ ⋅⋅−

λ′λ
λ∑∑ ji RqiRqi

ij
ji eePbb

k

k

Edd

d
vvvv2

( )ω+−δ λ′λ hEE

kTEeZP λ−−
λ = 1       ∑

λ

− λ= kTEeZ

bi depends on nucleus (isotope, spin relative to neutron

↑↑ or ↓↓), etc. Even for a monatomic system

ii bbb δ+=  ← random sample

[ ] jijiji bbbbbbbb δδ+δ+δ+= 2

zero zero unless i = j

222 bbbi −=δ

So 

inc

2

coh

22












′Ω
σ

+










′Ω
σ

=










′Ω
σ

Edd

d

Edd

d

Edd

d

(5)
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(6)

λλ′

λ′λ
′

=










′Ω
σ

∑

∑∑

⋅

⋅−

λ′λ
λ

j

Rqi

i

Rqi

j

i

e

ePb
k

k

Edd

d

vv

vv2

coh

2

( )ω+−δ λ′λ hEE

λλ′×

λ′λ



 −

′
=











′Ω
σ

⋅

⋅−

λ′λ
λ∑∑

i

i

Rqi

i

Rqi

e

ePbb
k

k

Edd

d

vv

vv22

inc

2

( )ω+−δ× λ′λ hEE

Write it as

( )ω
π

σ′
=











′Ω
σ

,
4 coh
coh

coh

2
qSN

k

k

Edd

d v

( )ω
π

σ′
=











′Ω
σ

,
4 inc
inc

inc

2
qSN

k

k

Edd

d v

( ) λλ′λ′λ=ω ∑∑∑ ⋅⋅−

λ′λ
λ

j

Rqi

i

Rqi ji eeP
N

qS
vvvvv 1

,coh

( )ω+−δ λ′λ hEE

( ) λλ′λ′λ=ω ⋅⋅−

λ′λ
λ∑∑ ii Rqi

i

Rqi eeP
N

qS
vvvvv 1

,inc

( )ω+−δ λ′λ hEE

σcoh/4π

σinc/4π
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Heisenberg Time-Dependent Operators

If A is any operator, and H is the system Hamiltonian

( ) hh iHtiHt AeetA −=

is the corresponding time-dependent Heisenberg operator.

A(0) = A.

Write ( ) ( )∫
∞

∞−

−ω−
λ′λ λλ′

π
=ω+−δ h

h
h tEEiti eedtEE

2

1

Then

λλ′λ′λ∑
λ ′

BA ( )ω+−δ λ′λ hEE

( )∫ ∑
∞

∞−

−

λ′

ω− λλ′λλ′λ′λ
π

= h

h

tEEiti eBAedt
2

1





 λ=λ λ−− hh tiEtiH ee

∫ ∑
∞

∞− λ′

ω− λλ′λ′λ
π

= BAedt ti

h2

1

( ) ( )∫
∞

∞−

ω− λλ
π

= tBAedt ti 0
2

1

h

( ) ( ) ( ) ( )tBAtBAP 00∑
λ

λ ≡λλ ← T.D. Correlation
function



S.K. Sinha 34

(7)

(8)

Thus, by (6),

( ) ( )

( )
λ×

λ
π

=ω

∑

∑∑∫

⋅

⋅−

λ
λ

∞

∞−

ω−

j

tRqi

i

Rqiti

j

i

e

ePedt
N

qS

vv

vv

h

v 0
coh 2

11
,

( ) ( )tRqi

ij

Rqiti ji eeedt
N

vvvv

h

⋅⋅−
∞

∞−

ω− ∑∫π
= 0

2

11

( ) ( ) ( )∑∫ λλ
π

=ω ⋅⋅−
λ

∞

∞−

ω−

i

tRqiRqiti ii eePedt
N

qS
vvvv

h

v 0
inc 2

11
,

( ) ( )tRqi

i

Rqiti ii eeedt
N

vvvv

h

⋅⋅−
∞

∞−

ω− ∑∫π
= 0

2

11

Let ( )rN
vρ  be density fn. of nuclei,

( ) ( )∑ −δ=ρ
i

iN Rrr
vvv

It’s Fourier Transform

( ) ∑∫ ⋅−⋅− ==ρ
i

Rqirqi
N

ieerdq
vvvvvv

Thus,

( ) ( ) ( )tqqedt
N

qS NN
ti ,0,

2

11
coh

vv

h

v +
∞

∞−

ω− ρρ
π

=ω⋅ ∫

( ) ( ) ( )∫ ⋅−+ =ρρ trGerdtqq rqi
NN ,,0,

vvvv vv

( ) ( )( ) ( )( )tRrRrrrdtrG ji
ij

vvvvvvv +′δ−′−δ′= ∑∫ 0,

Van-Hove space-time correlation function of system

( ) ( )∫∫ ⋅−
∞

∞−

ω−
π

=ω trGerdedt
N

qS rqiti ,
2

11
,coh

vv

h

v vv

NOTE: Ri(0), Rj(t) are not commuting operators in
general, so care must be exercised!

⇓
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(10)

X-rays

( ) ( ) ( ) ( )





 −δ+⋅






 −δ+= ∑ ii

i
ii rrrA

c

e
PrrrA

c

e
P

m
H

vvrrvvvrr

2

1

( )∑ −++
i

ee
i VrV int

(Pi = electron momentum,

A
v

 = vector potential

( )( ) le
ee

i
ii HVrVP

m
←++= −∑ int

2

2
1

( ) ( ) ( ) ( ){ }∑ ⋅−δ+−δ⋅+
i

iiii PrrrArrrAP
mc

e rvrvvvrr

2

( ) ( ) ( ) )2(
int2

2

2
HrArArr

mc

e

i
i ←⋅−δ+ ∑ vrvrvv

( ) { }∑
α

⋅−
αα

⋅+
αα ε+ε








ω

=
,

,
*

,

2/1

k

rki
k

rki
kk

eaeacrA
v

vv
v

vv
v

rrhvv

)1(
intH

 

→

In 1st order → 1-photon absorption, emission

In 2nd order → scattering

)2(
intH →

In 1st order → scattering

Using )2(
intH ,

λλ′

λ′λε⋅ε









=











′Ω
σ

∑

∑

⋅

⋅−
βα

λ′→λ
β′→α

j

rqi

i

rqi

kk

j

i

e

e
mc

e

Edd

d

vv

vv

vv
vv 2*

2

2

22

“Thomson” Scattering ( )ω+−δ λ′λ hEE

( )
2*

2

2

22
, βα ε⋅εω










=











′Ω
σ vvv

l qS
mc

e

Edd

d
e

(9)

(11)
( )1
intH
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( ) ( ) ( )tqqedtqS ee
ti

e ,0,
2

1
,

vv

h

v
lll

+
∞

∞−

ω− ρρ
π

=ω ∫

Elastic Scattering: ω = 0 → “Infinite time average.”

Often what we measure is 
Ω
σ

=′
′Ω

σ
∫ d

d
Ed

Edd

d 2

( ) ( )tqqdted
d

d ti ,0,
2coh

vv

h

h +
∞

∞−

ω− ρρω
π

=







Ω
σ

∫∫














−→ε⋅ε









×

→
′

×

βα raysx

neutrons

2*
2

2

2

2

vv

mc

e

b
k

k

( )ted ti πδ=ω∫ ω− 2

( )













−→










×

→×

=







Ω
σ

βα ε⋅ε

raysx

neutrons

2*2

2

2

vv

v

mc

e

b

qS
d

d

wh

( ) ( ) ( ) ( ) ( )qqqqqS ++ ρρ≡ρρ= 0,0,

(Equal-Time Correlation Function)

(12)

(13)

(14)


